GAYIT Z GRANITICKÉHO PEGMATITU OD CYRILOVA U VELKÉHO MEZIŘÍČÍ, MOLDANUBIKUM

GAYITE FROM GRANITIC PEGMATITE AT CYRILOV NEAR VELKÉ MEZIŘÍČÍ, MOLDANUBICUM

RADEK ŠKODA & JOSEF STANĚK

Abstract

Škoda, R., Staněk, J. (2010): Gayit z granitického pegmatitu od Cyrilova u Velkého Meziříčí, moldanubikum. - Acta Mus. Moraviae, Sci. geol., 2, 95, 87-94 (with English summary).

Gayite from granitic pegmatite at Cyrilov near Velké Meziříčí, Moldanubicum

Gayite, a new dufrenite group mineral with Mn as dominant divalent cation was recently described by KAMPF *et al.* (2010) from beryl-columbite-phosphate type granitic pegmatite in Cordoba province, Argentina. Similar, Mn-dominant member of the dufrenite group occurs in association with natrodufrenite, mitridatite, fluorapatite and crandalite group minerals at the border of the Al-phosphate nodule from Cyrilov pegmatite, whereas its chemical composition differs from the type locality gayite. The elevated content of Ca (0.18-0.33 apfu; 1.20-2.13 wt. % CaO), Mg (\leq 0.15 apfu Mg (\leq 0.68 wt. % MgO), variable Al (0.01-1.03 apfu; 0.05-6.14 wt.% Al₂O₃) and ratio Mn/(Mn+Fe²⁺) 0.30-0.81 is typical for natrodufrenite to gayite form Cyrilov. Substitution trends are briefly discussed.

Key words: gayite, natrodufrenite, secondary phosphates, EMPA, Cyrilov pegmatite, Moldanubicum.

Radek Škoda, Josef Staněk – Institute of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, email: rskoda@sci.muni.cz

1. Úvod

Minerály skupiny dufrenitu jsou vázány na fosforem bohaté granity a pegmatity, kde vznikají alterací primárních fosfátů v důsledku působení pozdních hydrotermálních fluid. Rovněž byly nalezeny jako primární či sekundární minerály na ložiscích železných rud (ANTHONY et al. 2000). Minerály skupiny dufrenitu jsou monoklinické s prostorovou grupou C 2/c a jejich struktura je tvořena čtyřmi typy oktaedrických pozic (M1, M2, M3, M4) a dvěma typy tetraedrických pozic (T1 a T2). Kanály uspořádané podél osy **b** obsahují dutiny (X) v osmičetné koordinaci obsahující kationy větších iontových poloměrů. Oktaedry M1 a M3 jsou vzájemně propojeny sdílením rohu oktaedrů. S ostatními oktaedry a tetraedry jsou také spojeny rohem. Oktaedry M2 a M4 tvoří plochou sdílené trimery M4-M2-M4. Minerály skupiny dufrenitu mají obecný vzorec XM2(M1, M3, M4)₅(T1, T2O₄)₄(OH)₆ · 2H₂O₅, přičemž pozice X je obsazována Na, Ca a může být také vakantní, do pozice M2 vstupuje Fe^{2+} , Mn^{2+} a Mg^{2+} a oktaedry M1, M3 a M4 obsahují trojmocné iony Fe^{3+} a Al^{3+} . V tetraedrické pozici dominuje P (KAMPF et al. 2010). Dosud bylo v přírodě nalezeno pět členů této skupiny: dufrenit, natrodufrenit, burangait, matiloiit a nově také gayit (KAMPF et al. 2010, viz tab. 1), pojmenovaný po Hebe D. Gayové, emeritní profesorce mineralogie na Universitě v Cordobě, Argentina.

Typová lokalita gayitu je pegmatit Gigante ležící cca 20 km od města Tanti v provincii Cordoba v Argentině. Jedná se o pegmatit beryl-columbit-fosfátováho typu (GALLISKI a ČERNÝ 2006), kde se minerály skupiny dufrenitu (natrodufrenit až gayit-v závislosti na proměnlivém poměru Mn/Fe) vyskytují ve vzorcích alterovaného triplitu. Drobné krystaly gayitu zde vyplňují dutiny po rozložených primárních fosfátech v asociaci s fluorapatitem a morinitem (KAMPF *et al.* 2010).

První zmínku o přítomnosti gayitu v Cyrilově uvádějí HOUZAR *et al.* (2010). Předmětem tohoto příspěvku je detailnější charakteristika gayitu z Al-fosfátové nodule z Cyrilova.

mineral	formula
dufrenite	$Ca_{0.5}Fe^{2+}Fe^{3+}{}_{5}(PO_{4})_{4}(OH)_{6} \cdot 2H_{2}O$
natrodufrenite	$NaFe^{2+}Fe^{3+}{}_{5}(PO_{4})_{4}(OH)_{6} \cdot 2H_{2}O$
gayite	$NaMn^{2+}Fe^{3+}{}_{5}(PO_{4})_{4}(OH)_{6} \cdot 2H_{2}O$
burangaite	$NaFe^{2+}Al_5(PO_4)_4(OH)_6 \cdot 2H_2O$
matioliite	NaMgAl ₅ (PO ₄) ₄ (OH) ₆ · 2H ₂ O

Tabulka 1.Přehled minerálů skupiny dufrenitu podle KAMPFA et al. (2010)Table 1.Minerals of the dufrenite group according to KAMPF et al. (2010)

2. Geologická situace a popis minerální asociace

Granitický pegmatit na Požárově mezi u Cyrilova proráží granulity borského masivu v blízkosti migmatitů strážeckého moldanubika. Vytváří těleso žilného tvaru ve směru SSZ-JJV, přibližně kolem 100 m dlouhé a 2-5 m mocné. Jde pravděpodobně o žílu s nepříliš výraznou zonální stavbou, složenou z následujících texturně paragenetických jednotek: granitická zóna, grafická zóna, blokový K-živec, albitová jednotka a blokový křemen. Podrobnější informace o tomto pegmatitu podávají STANĚK (1971) a ŠKODA *et al.* (2007). Pegmatit by mohl být svou stavbou podobný některým pegmatitům v nedalekých Hatích u Dolních Borů (STANĚK 1954, 1991). Na základě klasifikace granitických pegmatitů podle ČERNÉHO a ERCITA (2005) je možno toto těleso označit jako pegmatit třídy vzácných prvků (REL), podtřídy REL-Li (LCT), berylového typu a beryl-columbit-fosfátového subtypu, avšak bez přítomnosti berylu. Podle NOVÁKA (2005) by se mohlo jednat o pegmatit primitivního typu, fosfátového subtypu.

Přítomnost akumulací fosfátů v tomto pegmatitu je předmětem zájmu badatelů již od konce 19. století (JOHN 1900; KOVÁŘ a SLAVÍK 1900, 1901; FRONDEL 1949; NOVOTNÝ a STANĚK 1953; STANĚK 1955; ČECH *et al.* 1964; STANĚK 1968, 1971, 1994; NOVÁK *et al.* 2000, ŠKODA *et al.* 2007). Primární Fe-Mn fosfáty jsou reprezentovány především triplitem a graftonitem, dále se v nodulích vyskytuje sarkopsid, trifylín, wolfeit, harrisonit, monazit-(Ce) a xenotim-(Y) (ŠKODA *et al.* 2007). Jejich alterací vznikla celá řada sekundárních fosfátů včetně cyrilovitu, pro nějž je tento pegmatit typovou lokalitou (NOVOTNÝ a STANĚK, 1953).

Vedle převažujících fosfátových akumulací hnědozelené barvy byly ojediněle nalezeny i drobné, šedobílé nodulky nepřesahující svou velikostí 10–15 cm³. Nodulky jsou tvořeny jemnozrnnou směsí variscitu a křemene, dále se v nich vyskytují minerály řady crandalit-goyazit-gorceixit a fluorapatit (nepubl. data autorů). Makroskopicky jsou nápadné modrozelené akumulace minerálů řady lazulit-scorzalit (nebylo podrobněji zkoumáno), dosahující velikosti pouze několika mm³, prorůstající variscitem a křemenem. Variscit je lokálně přeměněn na kaolinit. Při okraji nodulek se místy vyskytují drobné, tmavě zelené agregáty tvořené především mitridatitem a minerály skupiny dufrenitu – gayitem a natrodufrenitem (obr. 1). Tyto minerály vytvářejí hypautomorfní až automorfní krystaly dosahující velikosti až 500 µm a jejich agregáty srůstají s mitridatitem a dalšími, výše uvedenými minerály (obr. 2a).

3. Metodika práce

Z vybraných vzorků byly zhotoveny leštěné nábrusy a výbrusy. Chemické složení studovaných fází bylo studováno elektronovou mikrosondou Cameca SX100 ve vlnově disperzním módu za použití urychlovacího napětí 15 kV a proudu 10 nA. Vzhledem k obsahu volatilních komponent ve studovaných minerálech byl elektronový svazek během analýzy defokusován

- Obr. 1. Fotografie Al-fosfátové nodulky z Cyrilova, delší rozměr je 30 mm. va-variscit, cr-minerály skupiny crandalitu (převážně goyazit a gorceixit), q-křemen, kva-kaolinizovaný variscit až kaolinit, ga-gayit až natrudufrenit, mt-mitridatit.
- Fig. 1. Photography of the Al-phosphate nodule form Cyrilov, larger dimension 30 mm. va-variscite, cr-crandalite group minerals (mainly goyazite and gorceixite), q-quartz, kva-kaolinized variscite to kaolinite, ga-gayite to natrodufrenite, mt-mitridatite.

Obr. 2. BSE snímek gayitu až natrodufrenitu z Cyrilova. a) ukázka minerální asociace, b) zonalita studovaných făzí, světlejší partie přísluší gayitu, tmavší linka je natrodufrenit. ap – fluorapatit, ostatní zkratky jsou totožné s obr. 1.

Fig. 2. BSE photography of gayite to natrodufrenite from Cyrilov. a) overall mineral association, b) zonality of the studied phases, bright parts correspond to gayite, darker zone is natrodufrenite. ap-fluorapatite, for other abbreviations see fig. 1.

na 5 µm, čímž se snížila míra poškození analyzovaného místa působením urychlených elektronů. Jako standardy byly použity následující přírodní minerály a syntetické fáze: Na (albit); Ca, P (fluorapatit); K, Al, Si (sanidin); Fe (hematit); Mn (Mn_2SiO_4); Ti (CaTiSiO₅); F (Mg_2PO_4F); Cu, As (lammerit); Zn (ZnS); Mg (Mg_2SiO_4); Ba (BaSO₄); Sr, S (SrSO₄). Naměřená data byla upravena automatickou PaP korekcí (POUCHOU a PICHOIR, 1985).

Mikrochemické analýzy byly přepočteny na krystalochemický vzorec normalizací na 4 kationy v tetraedrické pozici, Fe^{2+}/Fe^{3+} bylo rozpočteno na základě ideálního obsazení oktaedrických pozic, OH^- bylo následně dopočteno ve smyslu zachování celkové elektroneutrality vzorce. Jako druhá varianta přepočtu byla použita normalizace na 16 O^{2-} + 6 $OH^$ a na 4 kationy v tetraedrické pozici s rozdělením Fe^{2+}/Fe^{3+} na základě zachování celkové elektroneutrality. Oba způsoby přepočtu budou následně diskutovány v textu.

4. Chemické složení minerálů skupiny dufrenitu

Minerály řady natrodufrenit-gayit, pocházející z Al-fosfátové nodulky, jsou chemicky značně variabilní, což je patrné i ze snímků ve zpětně odražených eletronech (BSE) (obr. 2b). Při přepočtu vzorce normalizací na 4 kationy v T1, T2 pozici a rozdělením Fe²⁺/Fe³⁺ na základě ideálního obsazení oktaedrických pozic vychází značně variabilní zastoupení Fe²⁺ (0,16-0,64 apfu; 1,25-5,41 hm. % FeO) a Mn (0,25-0,67 apfu; 2,09-5,29 hm. % MnO), přičemž v případě gayitu Mn > Fe a v případě natrodufrenitu platí opak. Množství Mg a Zn dosahuje hodnot ≤ 0.15 apfu Mg (≤ 0.68 hm. % MgO) a ≤ 0.05 apfu Zn (≤ 0.49 hm. % ZnO). V oktaedrické pozici je rovněž patrná značná variabilita: Fe³⁺ (3,95-5,04 *apfu*; 36,98-44,92 hm. % Fe₂O₃) převládá nad Al (0,01-1,03 apfu; 0,05-6,14 hm. % Al₂O₃). Obsah Na (0,46-0,76 apfu; 1,60-2,22 hm. % Na₂O) převládá nad Ca (0,18-0,33 apfu; 1,20-2,13 hm. % CaO) a vakancí (0,04-0,31 *apfu*). V tetraedrické pozici je vedle převažujícího P přítomen také Si ($\leq 0.02 \ apfu$; 0,10 SiO₂) a As ($\leq 0.02 \ apfu$; 0,22 As₂O₅). Dopočtené množství OH⁻ kolísá v rozmezí 5,82-6,47 apfu. Při přepočtu na 6 OH⁻ skupin je nutné v některých případech kompenzovat nadbytek Ca nevyvázaného vakancí (Ca > 1) přítomností dvojmocného kationu v pozici M1, M3, M4, nejpravděpodobněji Fe²⁺ na úkor Fe³⁺ v rozsahu 0,00 až 0,40 apfu. Žřídka dochází také k opačnému případu (Ca \leq 0), kdy je třeba zvýšit valence v pozici M2, a to nejpravděpodobněji z Fe²⁺ na Fe³⁺ ($\leq 0,19$ apfu), viz tab. 2.

Na

Obr. 3. Ternární diagramy zobrazující chemické složení gayitu až natrodufrenitu z Cyrilova. a) obsazení pozice X, b) obsazení pozice M2.

Tabulka 2. Chemické složení gayitu a natrodufrenitu z Al-fosfátové nodule z Cyrilova. V tabulce jsou uvedeny dva způsoby přepočtu, 1) na základě T1,T2 = 4 a ideálního obsazení oktaedrických pozic, 2) na základě T1, T2 = 4 a 12 O²⁻ + 6 OH⁻. ga-gayit, nd-natrodufrenit.

 Table 2.
 Chemical composition of the gayite and natrodufrenite from Al-phosphate nodule, Cyrilov. Mineral formula was calculated by two ways, 1) based on the ideal octahedral site occupancy and T1,T2-site occupancy = 4, and 2) based on the 16 O+6 OH and T1, T2-site occupancy = 4. ga-gayite, nd-natrodufrenite.

	ga	ga	ga	ga	ga	ga	nd	nd	nd	nd	nd	
P ₂ O ₅	32,15	32,10	32,15	32,39	32,14	32,61	32,80	33,00	32,83	33,21	32,88	
As ₂ O ₆	0.13	0.04	0.10	0.19	0.14	0.12	0.08	0.05	0.08	0.00	0.04	
SiO.	0,15	0.06	0.07	0,15	0.02	0.06	0,00	0,02	0.05	0.05	0.06	
A1.0	0,08	0,00	0,07	0,02	0,08	0,00	0,08	0,02	0,03	0,05	0,00	
Al ₂ O ₃	0,64	0,66	0,34	0,70	0,96	2,01	4,53	4,73	5,81	6,14	5,14	
*Fe ₂ O ₃	43,92	44,87	45,52	44,66	44,33	42,18	39,32	39,23	37,58	36,98	38,64	
MgO	0,53	0,48	0,68	0,54	0,37	0,48	0,43	0,59	0,43	0,40	0,37	
CaO	1,74	1,75	2,13	1,70	1,51	1,46	1,25	1,27	1,33	1,20	2,10	
MnO *E-O	4,60	4,09	4,31	4,59	3,93	4,17	2,17	2,85	2,34	2,09	3,29	
7re0	2,21	2,90	2,40	2,40	3,27	2,89	5,07	4,17	5,08	0.21	4,12	
Na _o O	2.03	2 34	2.11	2.19	2 34	1.89	2 71	2.69	2 72	2 84	2 30	
*11.0	2,05	10.22	2,11	2,19	10.26	1,07	2,71	2,07	10.45	2,04	2,50	
TOTAL	10,20	10,22	10,25	10,32	10,20	10,39	10,45	10,49	10,43	10,36	10,46	
TOTAL	98,71	99,80	100,29	99,94	99,63	98,63	99,23	99,38	98,83	99,08	99,66	
X-size												
A-sile Na ⁺	0.58	0.67	0.60	0.62	0.66	0.52	0.75	0.75	0.76	0.78	0.64	
Ca^{2+}	0,38	0,07	0,00	0,02	0,00	0,33	0,75	0,75	0,70	0,78	0,04	
Ca Vao	0,27	0,28	0,33	0,27	0,24	0,23	0,19	0,20	0,20	0,10	0,32	
subtot	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
M2-site	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
Fe ²⁺	0.27	0.36	0.29	0.29	0.40	0.35	0.61	0.50	0.61	0.64	0.49	
Mn ²⁺	0.57	0.51	0.53	0.57	0.49	0.51	0.26	0.35	0.28	0.25	0.40	
Zn^{2+}	0.05	0.03	0.02	0.03	0.03	0.04	0.04	0.03	0.02	0.02	0.03	
$M\sigma^{2+}$	0.12	0.11	0.15	0.12	0.08	0.10	0.09	0.13	0.09	0.09	0.08	
subtot	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
M1. M3. M4	-site	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
Fe ³⁺	4,83	4,96	5,01	4,88	4,88	4,58	4,24	4,22	4,06	3,95	4,17	
Al ³⁺	0.11	0.11	0.06	0.12	0.17	0.34	0.77	0.80	0,98	1.03	0.87	
subtot	4.94	5.07	5.07	5.00	5.04	4.92	5.01	5.02	5.04	4.98	5.03	
T1, T2-site												
P ⁵⁺	3,98	3,99	3,98	3,98	3,98	3,98	3,98	3,99	3,99	3,99	3,99	
As ⁵⁺	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	
Si ⁴⁺	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,01	
subtot	4	4	4	4	4	4	4	4	4	4	4	
O ²⁻	16,00	16,00	16,00	16,00	16,00	16,00	16,00	16,00	16,00	16,00	16,00	
OH	5,93	6,42	6,47	6,15	6,26	5,73	6,15	6,18	6,27	6,08	6,38	
			recalcul	ation based of	on the 16 O,	6 OH and T	1,T2-site occ	upancy=4				
*Fe ₂ O ₃	44,52	41,08	41,28	43,34	42,05	44,64	37,91	37,58	35,04	36,25	35,14	
*FeO	1,67	6,31	6,22	3,59	5,32	0,68	6,34	5,65	7,36	6,06	7,27	
X-site												
Na ⁺	0,58	0,67	0,60	0,62	0,66	0,53	0,75	0,75	0,76	0,78	0,64	
Ca ²⁺	0,27	0,28	0,33	0,27	0,24	0,23	0,19	0,20	0,20	0,18	0,32	
vac	0,15	0,06	0,07	0,12	0,10	0,25	0,05	0,06	0,04	0,04	0,04	
subtot	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
M2-site												
Fe ²	0,20	0,43	0,37	0,29	0,44	0,08	0,62	0,51	0,65	0,62	0,53	
Mn	0,57	0,51	0,53	0,57	0,49	0,51	0,26	0,35	0,28	0,25	0,40	
Zn ²⁺	0,05	0,03	0,02	0,03	0,03	0,04	0,04	0,03	0,02	0,02	0,03	
Mg ²⁺	0,12	0,11	0,15	0,12	0,08	0,10	0,09	0,13	0,09	0,09	0,08	
Fe ³⁺	0,01	0,00	0,00	0,00	0,00	0,19	0,00	0,00	0,00	0,00	0,00	
subtot	0,94	1,07	1,07	1,00	1,04	0,92	1,01	1,02	1,04	0,98	1,03	
M1, M3, M4	-site											
re"	4,89	4,54	4,55	4,74	4,63	4,66	4,09	4,04	3,78	3,87	3,79	
Al ²	0,11	0,11	0,06	0,12	0,17	0,34	0,77	0,80	0,98	1,03	0,87	
Fe ²⁺	0,00	0,35	0,40	0,14	0,21	0,00	0,14	0,16	0,24	0,10	0,34	
subtot	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	
11, T2-site												
P ^{**}	3,98	3,99	3,98	3,98	3,98	3,98	3,98	3,99	3,99	3,99	3,99	
As and	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,00	0,00	
Si	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,01	
subtot	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	

Vzhledem k malému obsahu primárních Li-fosfátů (trifylín) v Fe-Mn fosfátových nodulích a absenci Li-fosfátů v Al-fosfátové noduli nebyl vstup Li do struktury gayitu-natrodufrenitu uvažován. O možnosti vstupu Li do minerálů skupiny dufrenitu nejsou rovněž žádné literární údaje.

Z výsledků chemických analýz je zřejmé variabilní složení minerálů skupiny dufrenitu, zejména v poměru Mn/(Fe²⁺+Mn) 0,30-0,81 a Al/(Fe³⁺+Al) 0,00-0,21. Uvedené hodnoty jsou získány z přepočtu založeném na ideálním obsazení oktaedrických pozic. Fe²⁺ a Mn negativné korelují v poměru 1:1, viz obr. 3b. V pozici X je patrná negativní korelace mezi vakancí a Na v poměru 1:1 za konstantního zastoupení Ca (obr. 3a), což indikuje odlišný substituční trend od předpokládaného Na₂Ca₋₁□₋₁ (natrodufrenit-dufrenit), operující pravděpodobně se změnou počtu OH⁻ skupin nebo se změnou mocenství železa v oktaedrických pozicích. Mezi Al a Fe³⁺ v M1, M3, M4-pozici je patrná negativní korelace v poměru 1:1 (Obr. 4a) dokládající substituční vektor Al³⁺Fe³⁺₋₁. S rostoucím množstvím Mn je patrný nárůst Fe³⁺ v poměru cca 1:3 (Obr. 4b), při součastném poklesu Al. Preference vstupu Mn a Fe³⁺ do krystalové struktury studované fáze je spíše způsobena krystalochemickými vlastnostmi struktury, než postupnou změnu chemického složení fluid, ze kterých tyto minerály krystalizovaly. Vzhledem k pozitivní korelaci Al a Fe²⁺ lze předpokládat vstup Al do gayitu burangaitovou molekulou, viz tab. 1.

Oproti publikovaným datům z typové lokality (KAMPF *et al.* 2010) vykazuje gayit z Cyrilova nižší zastoupení Na v pozici X, nižší obsahy Mn a vyšší množství Mg a Zn v pozici M2. Bohužel nelze srovnat pozorované substituční trendy s natrodufrenitem až gayitem z typové lokality, protože KAMPF *et al.* (2010) uvádějí pouze průměrnou hodnotu chemického složení a její rozptyl, i když z rozptylu hodnot jsou vedle kolísání Fe²⁺/Mn zřejmé i značné variace v Al/Fe³⁺. Z uvedeného krystalochemického vzorce je patrný přebytek vakancí nad Ca. Za zmínku stojí i jistý rozpor ve vzorci gayitu z typové lokality (KAMPF *et al.* 2010),

 $(Na_{0.85}Ca_{0.02})_{\Sigma 0.87}(Mn^{2+}_{0.74}Fe^{2+}_{0.12}Mg_{0.02}Zn_{0.02}Ti^{4+}_{0.01})_{\Sigma 0.90}(Fe^{3+}_{4.47}Al_{0.53})_{\Sigma 5.00}$ (P_{4.03}O₁₆)(OH)₆ · 2H₂O, který obsahuje 6 OH⁻, přičemž na základě principu zachování elektroneutrality by měl mít pouze 5,88 OH⁻ nebo 0,12 apfu trojmocného kationu v pozici M2.

Analýzy Mn-bohatého dufrenitu vznikajícího na úkor značně alterovaného triplitu z Huberova pně u Krásna ve Slavkovském lese uvádějí SEJKORA *et al.* (2006), přičemž u dvou z uvedených analýz je Mn již dominantním kationem v pozici M2 a jedná se tedy také o gayit. Od gayitu z Cyrilova se liší nižšími obsahy Ca, nižší vakancí v pozici X a vyšším

Obr. 4. Diagramy zobrazující chemické složení gayitu až natrodufrenitu z Cyrilova. a) substituce AlFe³⁺_1, b) pozitivní korelace mezi Mn a Fe³⁺.

zastoupením Mg. Autoři dále uvádějí analýzy asociujícího minerálu o chemickém složení velmi blízkém Mn-dominantnímu dufrenitu, avšak s převažující vakancí v pozici X (pro detailní údaje viz SEJKORA *et al.* 2006).

6. Závěr

Vzhledem k malým rozměrům gayitu a omezenému množství studijního materiálu nemohla být provedena Mössbauerova spektroskopie pro určení poměru Fe^{3+}/Fe^{2+} ani RTG difrakční analýza, která by s jistotou potvrdila dufrenitovou strukturu. Na základě zjištěné stechiometrie a vzhledem k plynulým přechodům gayitu k Mn-bohatému natrodufrenitu je příslušnost k této skupině zcela zřejmá. Z důvodu mnoha neznámých při výpočtu krystalochemického vzorce (např.: spolehlivé stanovení poměru Fe^{2+}/Fe^{3+} a množství OH⁻) nelze v současném stavu poznání zjistit přesné obsazení pozice M2 a funkční substituční vektory.

Závěrem je možné se shodnout s tvrzením KAMPFA *et al.* (2010), kteří předpokládají, že ve fosforem bohatých granitických pegmatitech bude gayit mnohem hojnější a jeho výskyty budou přibývat se stupněm znalosti chemického složení těchto sekundárních fází.

Poděkování

Autoři děkují recenzentům K. Breiterovi a J. Plášilovi za kritické přečtení rukopisu a cenné náměty, jež výrazně pomohly zlepšit úroveň předkládaného příspěvku.

LITERATURA

- ANTHONY, J., W., BIDEAUX, R., A., KENNETH, W., B., MONTE, C., N., 2000: Handbook of mineralogy, Arsenates, Phosphates, Vanadates, vol. 5. 680 p., Tuscon, Arizona.
- ČECH, F., POVONDRA, P., STANĚK, J., 1964: Studium triplitu, zwieselitu a graftonitu ze západomoravských pegmatitů. Acta Univ. Carol., Geol., 2., 97-116.

ČERNÝ, P., ERCIT, T., S., 2005: The classification of granitic pegmatites revisited. - Canad. Mineral., 43, 2005-2026.

FRONDEL, C., 1949: Wolfeite, xanthoxenite and whitlockite from the Palermo mine, New Hampshire. - Amer. Mineral., 34, 692-705.

GALLISKI, M., A., ČERNÝ, P., 2006: Geochemistry and structural state of columbite-group minerals in granitic pegmatites of the Pampean ranges, Argentina. - *Canad. Mineral.*, 44, 645-666.

- HOUZAR, S., CEMPÍREK, J., FOJT, B., GADAS, P., HRAZDIL, V., NOVÁK, M., SEJKORA, J., ŠKODA, R. 2010: Přehled nových minerálů nalezených na Moravě a ve Slezsku v letech 1985–2009. – Acta Mus. Moraviae, Sci. geol., 95, 5-60.
- JOHN von, C., 1900: Über einige neue Mineralvorkommen aus Mähren. Verh. geol. R.-A. 1900, 335-341.
- KAMPF, A. R., COLOMBO, F., GONZÁLEZ DEL TÁNAGO, J., 2010: Gayite, a new dufrenite-group mineral from Gigante granitic pegmatite, Córdoba province, Argentina. - Amer. Mineral., 95, 386-391.
- KOVÁŘ, F., SLAVÍK, F., 1900: Über Triplit von Wien und Cyrillhof in M\u00e4hren und seine Zersetzungsprodukte. Verh. Geol. R.-A., 397-404.
- KOVÁŘ, F., SLAVÍK, F., 1901: Triplit a nerosty z něho vzniklé z Cyrilova u Třebíče na Moravě. *Chem. listy*, 25, 3, 63-71.
- Novák, M., 2005: Granitické pegmatity Českého masivu (Česká republika); mineralogická, geochemická a regionální klasifikace a geologický vývoj. - Acta Mus. Moraviae, Sci. geol., 90, 3-74.
- NOVÁK, M., SEJKORA, J., COOPER, M., A., 2000. Cyrilovite from Cyrilov, western Moravia, Czech Republic; new data on the type material. J. Czech Geol. Soc., 45, 1-2, 101-105.
- NOVOTNÝ, M., STANĚK., 1953: Nový minerál, fosforečnan cyrilovit. Práce Mor. akad. věd přír. 25, 11, 8, 325-336.
- POUCHOU, J. L., PICHOIR, F., 1985. "PAP" procedure for improved quantitative microanalysis. *Microbeam Anal.* 20, 104-105.
- SEJKORA, J., ŠKODA, R., ONDRUŠ, P., BERAN, P., SÜSSER, C., 2006. Mineralogy of phosphate accumulations in the Huber stock, Krásno ore district, Slavkovský les area, Czech republic. - J. Czech Geol. Soc., 451, 1-2, 103-147.

- STANĚK, J., 1954: Petrografie a mineralogie pegmatitových žil u Dolních Borů. Práce Brněn. zákl. ČSAV, 26, 7, 1-43.
- STANĚK, J., 1955: K paragenezi fosfátů z Cyrilova u Velkého Meziříčí. Čas. Mor. mus., 40, 69-80.
- STANĚK, J., 1968: Železnato-manganaté fosfáty západomoravských pegmatitů. Nepubl. habil. spis, 1-102, UJEP, Brno.
- STANĚK, J., 1971: Studium sekundárních fosfátů železa a manganu z pegmatitu od Cyrilova. Folia Přír. fak. UJEP v Brně, geol. 9, 25-48.
- STANĚK, J., 1991: Paragenese minerálů pegmatitových žil z Hatí u Dolních Borů na západní Moravě. Acta Mus. Moraviae, Sci. nat., 76, 19-49.
- STANĚK, J., 1994: Fe-Mn Phosphatminerale und ihre Role in den Pegmatiten aus der Umgebung von Bory in Westmähren, Tschechische Republik. - Mitt. d. Österr. Mineral. Gesell. 139, 373-374.
- ŠKODA, R., STANĚK J., ČOPJAKOVÁ R. 2007: Minerální asociace fosfátových nodulí z granitického pegmatitu od Cyrilova u Velkého Meziříčí, Moldanubikum; část 1 – primární a exsoluční fáze. – Acta Mus. Moraviae, Sci. geol., 92, 59-74.